

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 6th Semester Examination, 2023

PHSADSE04T-PHYSICS (DSE3/4)

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer Question No.1 and any two questions from the rest

1. Answer any *fifteen* questions from the following:

 $2 \times 15 = 30$

- (a) Show that the identity element in a group is unique.
- (b) Prove that the order of an element 'a' of a group is same as that of its inverse i.e., a^{-1} .
- (c) If 'a' is conjugate to 'b', 'b' is conjugate to 'c' then show that 'a' is conjugate to 'c'.
- (d) If $A = \{1, 2, 3\}$, then write down the non-empty subsets of A.
- (e) Show that the set S of all integers does not form a group under the operation defined by $a*b=a-b \ \forall a,b \in S$.
- (f) Let $f: N \to N: f(x) = 2x$ for all x in N. Check whether f is a bijection when N is the set of all positive integers.
- (g) Show that the set U(n) of all unitary matrices of order n, where n is a fixed finite positive integer forms group under matrix multiplication.
- (h) Show that a set of nonzero rational numbers is an ablian group under multiplication.
- (i) When can a binary relation be called an equivalence relation?
- (j) State whether the permutation $p = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$ is odd or even permutation.
- (k) A committee is formed from two men and two women. What is the probability that the committee will have no man?
- (1) A problem in mechanics is given to three students A, B and C whose chance of solving it are 1/2, 1/3 and 1/4 respectively. What is the probability that the problem will be solved?
- (m) A biased six-sided dice has probabilities $\frac{p}{2}$, p, p, p, p, p, p, p of getting 1, 2, 3, 4, 5, 6 respectively. Calculate p.

CBCS/B.Sc./Hons./6th Sem./PHSADSE04T/2023

(n) The probability density function $\psi(x)$ of a continuous random variable x is defined by the relation

$$\psi(x) = \begin{cases} A/x^3 & \text{for } 5 \le x \le 10\\ 0 & \text{elsewhere} \end{cases}$$

Evaluate A.

- (o) If P(A) = 0.3, $P(A \cup B) = 0.6$, where A and B are independent then find P(B).
- (p) The mean and standard deviation of a binomial distribution are 10 and 2 respectively. Find the probability of success in each trial.
- (q) A random variable x has a probability density function $f(x) = e^{-x}$ in the interval $0 < x < \infty$, and zero elsewhere. Find the value of probability that x lies in the interval $1 \le x \le 2$.
- (r) Show that the equation $\frac{\partial^2 u}{\partial t^2} c^2 \frac{\partial^2 u}{\partial x^2} = 0$ is a hyperbolic differential equation.
- (s) Find the solution of the equation $\frac{\partial u}{\partial t} + 3\frac{\partial u}{\partial x} = 4x$ with $u(x, 0) = 6e^{-3t}$.
- (t) Show that the function, $U(x, y) = f(x+iy) + g(x-iy) + x^3 + y^3$ satisfies the partial differential equation $\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 6(x+y)$ where f and g are arbitrary functions and $i = \sqrt{-1}$.
- 2. (a) Show that the set of four 2×2 matrices given by
 - $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, D = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ forms a group of order four under multiplication and the group is abelian.

4+1

3

2

3

3

2+2

- (b) Prove that the elements common to two intersecting subgroups H_1 and H_2 form a subgroup of the group G.
- (c) Prove that a group where order is a prime number must be a cyclic group.
- 3. (a) Show that a non-empty subset H of a group G is a subgroup of G if $a \in H$ and $b \in H$ implies $ab^{-1} \in H$.
 - (b) Show that the mapping $f:(Z,+) \to (2Z,+)$ such that f(x) = 2x, $\forall x \in Z$ is an isomorphism from Z to 2Z, where Z is the set of integers.
 - (c) A density function is defined by

$$f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

- (i) Determine the probability that the variate having this density will fall in the interval (1, 2).
- (ii) Find the cumulative probability function F(2).

CBCS/B.Sc./Hons./6th Sem./PHSADSE04T/2023

- 4. (a) What are Dirichlet and Neumann boundary conditions?
 (b) What are characteristic curves or characteristics of partial differential equations?
 2
 - (c) An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of a scooter, car and a truck meeting an accident are 0.01, 0.03, 0.15 respectively. If one of the insured persons meets with an accident, find the probability that he is a scooter driver.
 - (d) Show that every subgroup of an abelian group is a normal subgroup.
- 5. (a) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} 6 \frac{\partial^2 z}{\partial y^2} = y \cos x$
 - (b) The Gaussian distribution with mean μ and standard deviation σ is given by $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Find $\langle x \rangle$ and $\langle x^2 \rangle$.

(c) Show that the function $u = f\left(\frac{x}{y}\right)$ satisfies the equation $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$.

____×___